Legged Robots for Last 50 Feet Delivery

Presented by:

Damion Shelton, PhD CEO, Agility Robotics

POWERED BY POSSIBILITIES.

Most parts of the logistics chain are rapidly automating.

The human world isn't designed for robots

Our world is designed around us, not robots.

New infrastructure can be designed for automation from day one.

But *most* spaces are designed around humans, and are difficult to retrofit.

Legged robots provide human-like mobility *and* do not require new infrastructure

Cars do roads well.

No need to reinvent the wheel. Leverage the efficiency of wheels for long distances, and high cargo capacity for aggregating demand.

Legs do sidewalks and stairs well.

Legs are hard to build, but we've spent two decades learning how. Use legs to access the customer's preferred delivery location.

Re-use existing infrastructure wherever possible to *increase addressable market*.

Why legs + vehicles?

The existing paradigm of package aggregation in a road-legal vehicle is efficient, and a delivery driver is able to place the package in the customer's preferred location. But this is hard to automate.

Current automation solutions are largely point-to-point (which is inefficient) and can't deliver to the door (which forces changes to customer behavior).

move + carry

move + inspect

move + interact

Human-like mobility is required for many jobs ...not just logistics

Mobile computing provides an app ecosystem for *information*

Digit provides an app ecosystem for labor

Common Platform Software APIs Software Apps Move + Carry Mobility stack Carry packages point to point Balance and posture Manual labor (the robot alone) Movement planning Handle stairs/obstacles/terrain Last mile (with vehicle) Hardware Walk from A to B indoors or out Human-like mobility Move + Inspect **Rugged design** Perception stack Long battery life Monitor infrastructure Map the environment Integrated computing Autonomous: security Identify obstacles 20 kg payload capacity Local teleop: military / law enf. Recognize objects and people Near + far range sensors Move + Interact Manipulation stack Telepresence, remote interaction Grasp objects Virtual tourism: hike with family Pick and place

Core Product

POWERED BY POSSIBILITIES.

App Ecosystem

OTA app downloads and platform updates

- Updates can apply to the core "mobility operating system" APIs
 - E.g. faster footstep planning
- Or updates can be appspecific
 - E.g. faster box-picking/placing
- The fleet learns as a whole

Outdoor move+carry Ongoing partnership with Ford

Indoor move+carry Ongoing partnership with multinational logistics company

ROI from first unit deployed Works with existing infrastructure The first autonomous taxi is useful **Operates with existing infrastructure** Scales to large fleets

One warehouse robot is not useful **Requires new infrastructure** Requires full fleet up front

- Velodyne VLP-16 Lidar

(4) Intel RealSense Stereo Cameras

Seeing and mapping the world

LIDAR SLAM on Digit

base lin

Technology development timeline

Our core technology: mobility for imperfect worlds

Science: Understand and model the dynamics of a highly capable system.

Engineering: Incorporate these principles into products, and physics ensures that the capabilities will be similar "for free".

Our control hierarchy

1Hz: User input, high-level intent, waypoints, tasklevel decisions **30Hz:** Continuously updated plans

2 kHz: Classical control, such as inverse dynamics, PD gains, etc

∞ **kHz:** Dynamics Foundation

Machine learning can expand on the base skill "repertoire"

E

Machine learning can expand on the base skill "repertoire"

Kinematic reference motion

Fully Autonomous Operations

. . . .

15

Waypoints and "box move" task user-defined Picking/placing and walking autonomous

ł.

R

R

MILLA

Bipedal robots are ready to work in human spaces

For more information:

Speaker email: damion.shelton@agilityrobotics.com Website: www.agilityrobotics.com

Or visit MODEX Booth 1508

