## Warehouse Execution Systems and the "Smart" Distribution Center

Presented by: Dinesh Dongre Dan Gilmore





#### Presenters



#### **Dinesh Dongre** VP Product Strategy Softeon, Inc.



#### **Dan Gilmore** CMO Softeon, Inc.



#### What is a Warehouse Execution System?



#### How We Got Here



"The WMS should have all the information it needs to make all the decisions. The WCS should just take that decision about where a carton goes, deliver it, and then tell us that it's there."

Mark Fralick, GetUsROI



### **Some Implementations**



#### Why?

- Lack of WMS Capabilities
- MHA Vendor in Control of Customer
- Agreements between WMS and WCS Vendor



## New Dynamic in Some Scenarios



#### Why?

- WES only Developed Due to Perceived Shortcomings in WMS
- Attributes
  - Visibility to Process/Work Area/MHA Status
  - Flow of Work Based on Capacities and Work Load
  - "Waveless" Processing/Leveling of Activity





#### Gartner's View

| <u>Syste</u>                               | <u>m</u> - <u>Definition</u>                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Warehouse<br>control<br>system<br>(WCS)    | Middleware that sits between the WMS and the PLCs that control material handling automation devices. The WCS translates business-transactional information coming out of a WMS into real-time instructions for the automation. WCSs also help orchestrate product movements within automated warehouses.                                                                                                                                            |  |  |  |
| Warehouse<br>execution<br>system<br>(WES)  | An emerging hybrid that blends capabilities from both a traditional WMS<br>and a WCS. A WES builds on the WCS's near-real-time insight into what's<br>happening in the automated warehouse, but it adds business process logic<br>to this layer.                                                                                                                                                                                                    |  |  |  |
| Warehouse<br>management<br>system<br>(WMS) | The traditional business applications that handle business transactions,<br>such as receiving goods, putting them away, and picking, packing and<br>shipping orders. The focus of a WMS is on inventory and transactional<br>integrity for people-managed processes. On top of process integrity, WMSs<br>have been enhanced to support more and more capabilities that are<br>intended to proactively drive process and productivity improvements. |  |  |  |



#### Gartner's View

| Syste                                      | <u>m</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <u>Definition</u>                                                              |                                                                                 |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Warehouse<br>control<br>system<br>(WCS)    | Middleware that sits between the WMS and the PLCs that control material handling automation devices. The WCS translates business-transactional information coming out of a WMS into real-time instructions for the automation. WCSs also help orchestrate product movements within automated warehouses.                                                                                                                                            |                                                                                  |                                                                                 |  |
| Warehouse<br>execution<br>system<br>(WES)  | An emerg<br>and a WC<br>happenin<br>to this lay                                                                                                                                                                                                                                                                                                                                                                                                     | This is pretty good –<br>except WES<br>Is Not only for Heavily<br>Automated DCs! | both a traditional WMS<br>time insight into what's<br>ds business process logic |  |
| Warehouse<br>management<br>system<br>(WMS) | The traditional business applications that handle business transactions,<br>such as receiving goods, putting them away, and picking, packing and<br>shipping orders. The focus of a WMS is on inventory and transactional<br>integrity for people-managed processes. On top of process integrity, WMSs<br>have been enhanced to support more and more capabilities that are<br>intended to proactively drive process and productivity improvements. |                                                                                  |                                                                                 |  |





## **WES Characteristics**

- Warehouse Execution System Provides Visibility, Control and Optimization of Order Picking and Related Process, including Optimization of Materials Handling Systems, in a manner far above what is Available Today even in Advanced Warehouse Management Systems
- Can be Integrated WMS of Same Vendor or with Any Existing Warehouse System
- Should Work for Automated, non-Automated and Hybrid DCs
- One System to Manage All Automation in the DC

**POWERED BY POSSIBILITIES.** 

Game-changing Breakthrough that Starts Delivery of the "Autonomous WMS"



## Represents a Step-Chain in WMS Capabilities

- 20 Years of Only Incremental Improvement in WMS Capabilities
- Softeon Warehouse Management and Execution System Starts Down the Path of New WMS Model





#### **A WMS Market Inflection Point**



Warehouse Management & Execution System



#### WES Addresses Common Distribution Problems/Opportunities

- Lack of Granular Visibility to Throughput and Order Execution
- Labor Planning Challenges
  - Right Resources not in Right Place at Right Time
- Time/Cost/Approach of Adding Technologies (e.g., Picking Sub-Systems)
- Sub-Optimal Picking Execution

- Difficulty Meeting Carrier Cut Off Times/Ensuring SLAs
- High Variability in Materials Handling Equipment Utilization
- WMS Still Highly Reliant on Human Decision-Making



## **Fundamental Value Proposition**

#### WES Should:

- Enable Companies to Meet Customer Demand and Service Commitments at the Least Possible Cost
- Significantly Shrink the Gap Between Theoretic and Realized DC/System Throughput
- Provide Single System for Management and Control of Fulfillment Across the DC



## How WES Delivers Results

- Real-Time Visibility to Throughput, Bottlenecks and Events
- Direct Management and Optimization of Picking Sub-Systems
- Advanced, Configurable Optimization for Order Batching, Release, Picking and Replenishment
- Workload Balancing to Maximize Equipment Utilization and Flow
- Automated Order Release Based on Service Commitment, Shipping Schedules and Real-Time Condition Monitoring
- Use of Simulation to Plan, Re-plan and Allocate Resources



#### WES Architecture





## Key WES Function Components

| Condition and Event  | Simulation      | Shared WMS         |  |  |  |  |  |  |
|----------------------|-----------------|--------------------|--|--|--|--|--|--|
| Monitor              | Engine          | Component Library  |  |  |  |  |  |  |
| Pick Route           | Automated Order | Advanced           |  |  |  |  |  |  |
| Optimizer            | Release Engine  | Scheduler          |  |  |  |  |  |  |
| Order Batch          | Capacity        | Dynamic Work Queue |  |  |  |  |  |  |
| Optimizer            | Manager         | Manager            |  |  |  |  |  |  |
| Dynamic Rules Engine |                 |                    |  |  |  |  |  |  |
| MHE Integration      |                 |                    |  |  |  |  |  |  |





# Real-time Visibility to Throughput and Bottlenecks



#### WES Real-Time Dashboards



Softeon -



#### Shared WMS Component Library



# Examples of WMS + WES Capabilities

- Advanced Cartonization
- Optimized Order Planning and Release Based on Many Variables, Including Priority, Travel Path and Distance, Bath and Clustering Opportunities, Replenishment Status, and More
- Waveless, Wave-Based, or Hybrid Picking
- Configurable Order Pool Management
- Dynamic Slotting
- Direct Management and Control of Picking Subsystems Including Voice, Pick-to-Light, Smart Carts, Put Walls, Conveyors and Mobile Robots
- Dynamic Pick Cart and Put Wall Order Assembly
- Hot Order Insertion
- Packing Operations

- Parcel Shipping
- Print-and-Apply
- Distribution Center Resource Planning Based on Simulation of Actual and Forecast Order Volumes
- Real-Time Monitoring of Activity and Throughput by Individual Processing Area in the DC
- Analytics on Available Versus Required Resources (People and Equipment) by Processing Area
- Auto Assignment of Resources to Processing Areas
- Pull-based Order Release Based on Outbound Shipping Schedules, Service Commitment, and Carrier Cut Off Times
- Labor Management and Reporting



# Direct Management and Control of Picking Systems



## Each Sub-system with its Own Control Software



## Each Sub-system with its Own Control Software



## The Better Way





#### The Better Way





#### **Pick Route Optimization**



# Dynamic, "Aware" Pick Release Management





# Optimization of Order Batching (Example #1)

- Cartonization in picking sequence
- Cluster Building based on relative proximity between picking locations of containers
- Parameter driven batching/cluster-building based on
  - Cart size
  - Number of free carts
  - Wait times
  - Resource availability
- Strike the right balance between optimization of cart build and on-time task completion (Static Cart Vs Dynamic / Perpetual Cart)
- Intelligent Hot Order Insertion









# Optimization of Order Batching (Example #2)

**Incoming Order Streams** 



**Pick Carts** 

**POWERED BY POSSIBILITIES.** 

**Dynamic Order Pool** 

- Advanced Features
  - Batch and Cluster Picking on Same Cart
  - Pick from Lights/Non-Light Areas Together
  - Dynamic and Virtual Wall Assignment
  - Multiple Operators per Wall
  - Wave Overlap on Wall
  - Hot Order Insertion into Best Cart
  - Complete Integration with Packing
  - Metered Carton Flow into Walls
  - More





**Pack Stations** 

#### **Putwall Orchestration Dashboard**



×Softeon

#### **POWERED BY POSSIBILITIES.**

[]]

ρ

e



# New "Plug and Play" Approach to Adding Technology



#### **Automated Order Release**



## Auto Order/Work Release

- Dynamic Rules-based Auto Release of Order/Tasks
  - Order Attributes (Priority, Ship Date, Customer, and such)
  - Resource Capacity and Standards
    - Labor & Resource Type (Case Pickers, etc.)
    - Equipment (Cart, Robots, etc.)
    - MHE (Put Wall, Conveyor, Sorter, Diverts, etc.)
  - Reprioritization
  - Workload Balancing needs
  - Real-time feedback (changes in priority and/or ship times, inventory, capacity)
- Identifying best channels of work (Pallet Pick, Put Wall, Case Pick, etc.)
  - For example Ability to accumulate full case picks into pallet picks based on configurable amount of time for newer orders
- Configurable Rules



#### Auto Order Release – Rule Definition/ Configuration

| Rule Engine   |                                         |                                                  | Q Search | +        | Add O Refresh | 🗱 Input 🗒 Co | nstraint 🛛 🖉 Output |
|---------------|-----------------------------------------|--------------------------------------------------|----------|----------|---------------|--------------|---------------------|
| Seq # Rule ID | D                                       | Description                                      |          | Category |               | Туре         |                     |
| 1 ORDER       | PRIORITIZATION                          | Order Cut Off Time Updation and Prioritization   | 0        | ORDER    |               |              | B ^                 |
| 2 FG_TAS      | SK_CREATOR                              | Builds Full Pallet and Case Pick for Vaccum SKUs | 6        |          |               |              | E                   |
| 5 ORDER       | LHOLD_RELEASE                           | Order Hold Release                               | 6        | ORDER    |               | ORDER        | E                   |
| 5 REPL_P      | RIORITY_UPDATE                          | Replenishment repriority                         | 6        |          |               |              | E                   |
| 20 REPLEN     | NISHMENT_CLEANUP                        | Replenishment CleanUp                            | 6        |          |               |              | E.                  |
| Detail        |                                         |                                                  |          | Q Search | + Add         | 🍂 Input 🗒 Co | nstraint 🛛 🖓 Output |
| Seq #         | Description                             |                                                  |          |          | Input Flag    | Constraint   | Output Flag         |
|               | 1 Order Ship Cut-Off Time Updation      | (Based on Order Drop Time)                       |          | 0        | ~             | ×            | × ^                 |
|               | 2 Order Priority Update                 |                                                  |          | θ        | ~             | ×            | ×                   |
|               | 11 Order Prioritization - Previous Load | d Day, Todays Shipment                           |          | 0        | ~             | ×            | ×                   |
|               |                                         |                                                  |          |          |               |              |                     |





## Auto Order Release – Putwall Example

#### Representative Rules for Auto Release of Orders designated for a Put Wall

- Put Wall Pairing (One resource per wall or 2 back-to-back walls)
- Ability to release batches for paired put-wall after 'x' % of Put Wall processing is complete
- Just in time Cart Build (Creation of Pick task) based on Put Wall completion status
- Prioritization of batches eligible for cart build based on status of put-wall completion.
- Maintain balance of workload across Put Walls by feeding the right Put Walls
  - Put Wall level queue (number of totes) configuration
- Ability to pick for multiple Put Walls in one cart / task
- Ability to activate / deactivate Put Walls based on resource availability
- Assign homogeneous orders (units/lines ) to a single Put Wall to reduce overall time taken for put-wall release
- "Elastic" Put Wall (Use a Put Wall of 100 slots to process more than 100 orders by dynamically allocating and releasing Put Wall slots)
- Ability for priority orders to side-step regular queue and hit the Put Wall at the next possible opportunity



# **Optimizing Equipment Utilization**





#### Simulation-Based Resource Planning

## Simulation-Based Resource Planning

#### **How It Works**

- Simulation Engine Combines Available Order Pool Forecasts for Additional Work Likely to be Received based on Order History/Patterns
- Understands Current Resource Plan/Allocation across Processing Areas (e.g., Pallet, Case, Piece Pick; Put Walls; Replenishment, etc.)
- WES Simulates Expected Work (Demand) against Current Resources Plan in a Time-Phased Manner
- Identifies by Time Block where there is Demand-Resource Imbalance



# Demand vs. Capacity Dashboard from Simulation





## **Dynamic Capacity Management**





#### **Case Studies**

- Fast Growing Omnichannel Retailer
- Home Products Manufacturer
- Major Sports/Outdoor Apparel Brand
- Well-Known Home Appliance Maker



## **Benefits of Next-Generation WES**

- Double Digit Improvement in Labor Productivity
- Significant Reduction in Supervisory Overhead
- Reduced/Better Managed Overtime
- Improved Throughput
  - Closing Gap between Theoretic and Actual Throughput of a Facility
- Easily and Quickly Evaluate and Deploy New Sub-Systems/Technologies
- Consistently Meet Service Commitment with Little "Chaos"
- Improve MHE Utilization

**POWERED BY POSSIBILITIES.** 

• Additional Throughput or Reduce Required Capacity

#### Benefits Applicable to Automated, Manual and Hybrid DCs!



#### Where We Are Headed

#### Beginning of an Era of Autonomous Warehouse Software

- Automated Decision-Making
- Self-tuning (in part through use of AI/ML)
- Advanced Focus on Product and Process Flow
  - Reduce/Eliminate Process Bottlenecks and Dwell Times
  - Flow Distribution<sup>™</sup>



For more information:



Speaker #1 email: DDongre@Softeon.com website: <u>www.Softeon.com</u>

Speaker #2 email: DGilmore@Softeon.com website: <u>www.Softeon.com</u>

Join us at our second presentation on what's new in WMS for 2020 – 2 times available!

Tuesday @ 2:15pm and and Thursday @ 1pm in Theatre D

Visit us @ MODEX Booth #7466

